

4. P-C PRESENTATIONS

§ 4.1. Definition and Examples

The presentation of a metacyclic group has relations that express a power of the second generator as a word in the first and commutator relators. We now generalise this.

A **power-commutator presentation (PCP)** of a group is one of the form:

$$\langle A_1, \dots, A_k \mid A_i^{n_i} = P_i \text{ for } i = 1, \dots, k \text{ and } [A_i, A_j] = C_{ij} \text{ for } 0 \leq i < j \leq k \rangle$$

where each P_i is a word in the generators up to A_{i-1} (with

$P_1 = 1$) and each C_{ij} is a word in the generators up to A_{j-1} .

We can write every element of such a group in the form:

$$A_k^{a_k} A_{k-1}^{a_{k-1}} \dots A_1^{a_1}$$

where $0 \leq a_i < n_i$ for each i .

The reason for the reverse order is because $A_i A_j = A_j A_i C_{ij}$ for all $i < j$ and so writing the generators in reverse order is more convenient.

Given a word in the generators we bring all the A_k 's to the left using the relations $A_i A_j = A_j A_i C_{ij}$. The word C_{ij} involves only the generators up to A_{j-1} . We now bring all the A_{j-1} 's to the left, immediately to the right of the A_j 's. We continue in this way.

The order of such a group is at most $n_1 n_2 \dots n_k$, but it can be smaller. Let us consider the special cases where the number of generators is small.

One Generator: A PCP with one generator will have the form $G = \langle A \mid A^n = 1 \rangle$ and so the group will be a finite cyclic group. Clearly $G' = 1$ in this case.

Two Generators: A PCP with two generators will have the form:

$G = \langle A, B \mid A^m = 1, B^n = A^k, [A, B] = A^r \rangle$
and so the group will be a finite metacyclic group.
Clearly $G'' = 1$ in this case.

Three Generators: A PCP with three generators will have the form:

$$\langle A, B, C \mid A^m = 1, B^n = A^k, C^d = B^e A^f, [A, B] = A^r, [A, C] = B^h A^k, [B, C] = B^u A^v \rangle.$$

The subgroup $H = \langle A, B \rangle$ will be normal, since

$$C^{-1}AC = AB^h A^k \text{ and } C^{-1}BC = B^{u+1} A^v.$$

H will contain a normal subgroup $K = \langle A \rangle$, which may not be normal in G . Since G/H , H/K and K are cyclic,

$G''' = 1$. The soluble length of G is thus at most 3 (but it could be less).

Example 1: Let G be the group

$$\langle A, B, C, D \mid A^4 = 1, B^2 = A^2, C^2 = A^2, D^3 = 1, [B, C] = A^2, [B, D] = CBA^2, [C, D] = BA^2 \rangle.$$

[Here, to save space, we omit commutators where generators commute.]

Write the product $(DCBA)(D^2CA^3)$ in the form $D^pC^qB^rA^s$ where $0 \leq p < 3$, $0 \leq q < 2$, $0 \leq r < 2$ and $0 \leq s < 4$.

Solution: From the power relations we have:

- (P1) $A^4 = 1$;
- (P2) $B^2 = A^2$;
- (P3) $C^2 = A^2$;
- (P4) $D^3 = 1$.

From the commutator relations we have:

- (C1) $AB = BA$; $AC = CA$; $AD = DA$;
- (C2) $BC = CBA^2$;
- (C3) $BD = DBCBA^2 = DCBA^2BA^2 = DCB^2A^4 = DCA^2$;
- (C4) $CD = DCBA^2$.

$$\begin{aligned}
 \text{Hence } (DCBA)(D^2CA^3) &= (DCBD^2C)A^4 \text{ by C1} \\
 &= DC(BD)DC \\
 &= DC(DCA^2)DC \text{ by C3} \\
 &= (DCDCDC)A^2 \text{ by C1} \\
 &= D(CD)(CD)CA^2 \\
 &= D(DCBA^2)(DCBA^2)CA^2 \\
 &\quad \text{by C4}
 \end{aligned}$$

$$\begin{aligned}
&= (D^2CBDCBC)A^6 \text{ by C1} \\
&= D^2CBDCBCA^2 \text{ by P1} \\
&= D^2C(BD)C(BC)A^2 \\
&= D^2C(DCA^2)C(CBA^2)A^2 \\
&\quad \text{by C3 and C2} \\
&= (D^2CDC^3B)A^6 \text{ by C1} \\
&= (D^2CDC^3B)A^2 \text{ by P1} \\
&= (D^2CD)(C^2)(CBA^2) \\
&= (D^2CD)(A^2)(CBA^2) \text{ by P3} \\
&= (D^2CDCB)A^4 \text{ by C1} \\
&= D^2CDCB \text{ by P1} \\
&= (D^2)(CD)(CB) \\
&= (D^2)(DCBA^2)(CB) \text{ by C4} \\
&= (D^3CBCB)A^2 \text{ by C1} \\
&= (CBCB)A^2 \text{ by P4} \\
&= C(BC)(BA^2) \\
&= C(CBA^2)(BA^2) \text{ by C2} \\
&= (C^2B^2)A^4 \text{ by C1} \\
&= C^2B^2 \text{ by P1} \\
&= C^2A^2 \text{ by P2.}
\end{aligned}$$

Example 2: $G = \langle A, B, C \mid A^4, B^4, C^2, [A, C] = B^2 \rangle$. This group has order 32 and its elements are of the form $C^iB^jA^k$ where $i, j = 0, 1, 2, 3$ and $k = 0, 1$.

Since $[A, C] = B^2$, $AC = CAB^2$. So every time a C moves to the left across an A, a factor of B^2 is introduced. Since B is in the centre the A's and B's can be brought to the right.

A typical product is:

$$C^i B^j A^k \times C^u B^v A^w = C^{i+u} B^{2uk+j+v} A^{k+w}.$$

(We introduce uk factors of B^2 because we have to move a C past an A uk times.)

For example:

$$\begin{aligned} C^3 B^3 A^3 \times C B^2 A^3 &= C^3 B^3 (C A^3 B^6) B^2 A^3 \\ &= C^4 B^3 A^3 = B^3 A^2 \end{aligned}$$

The bottom-right hand portion of the group table is:

.....
CB^3	BA^3	B^2	B^2A	B^2A^2
CB^3A	B^3	A	A^2	A^3
CB^3A^2	BA	B^2A^2	B^2A^3	B^2
CB^3A^3	B^3A^2	A^3	1	A
				A^2

Example 3:

Let $G = \langle A, B, C \mid A^{60} = 1, B^{10} = A^{12}, C^4 = B^3,$

$[A, B] = A^9, [A, C] = A^{14}, [B, C] = BA \rangle$. What is $|G|$?

Solution: $\text{GCD}(60, 9) = 3$ so $A^3 = 1$.

$\text{GCD}(10, 2^4 - 1) = 5$ so $B^5 \in \langle A \rangle$.

Hence $|G|$ divides 60.

However we can do better than that.

Since $C^{-1}AC = A^{15} = 1$, we have $A = 1$.

$C^{-1}BC = B^2A = B^2$. Cubing both sides, $C^{-1}B^3C = B^6$.

But $B^3 = C^4$ so $C^{-1}B^3C = B^3$.

Hence $B^6 = B^3$ and so $B^3 = 1$.

However $B^5 \in \langle A \rangle = 1$ so $B^{\text{GCD}(3, 5)} = 1$ whence $B = 1$.

So $G = \langle C \mid C^4 \rangle$ and so $|G| = 4$.

§ 4.2. P-C Presentations and Soluble Groups

Theorem 1: The group G has a power-commutator presentation if and only if it is a finite soluble group.

Proof: Suppose G has the presentation:

$$\langle A_1, \dots, A_k \mid A_i^{n_i} = P_i(A_1, \dots, A_{i-1}) \text{ for } i = 1, \dots, k, \rangle$$

$$[A_i, A_j] = C_{ij}(A_1, \dots, A_{j-1}) \text{ for } 0 \leq i < j \leq k.$$

For $r = 1, 2, \dots, k$ let $G_r = \langle A_1, \dots, A_r \rangle$ be the subgroup generated by the first r generators. Suppose $r > 1$.

For $i < r$, $[A_i, A_r] \in G_{r-1}$ and so it follows that $G_r' \leq G_{r-1}$. Also $G_1' = 1$. Hence G is soluble of length at most k .

Conversely suppose G is a finite soluble group. By induction we may suppose that G' has a power-commutator presentation:

$$\langle A_1, \dots, A_k \mid A_i^{n_i} = P_i(A_1, \dots, A_{i-1}) \text{ for } i = 1, \dots, k, \rangle$$

$$[A_i, A_j] = C_{ij}(A_1, \dots, A_{j-1}) \text{ for } 0 \leq i < j \leq k.$$

Now G/G' is a finite abelian group. Let G/G' be generated by the cosets B_1G', \dots, B_sG' . Clearly G is generated by $\{A_1, \dots, A_k, B_1, \dots, B_s\}$. Now if the coset B_iG' has order m_i then $B_i^{m_i} \in G'$ and so $B_i^{m_i} \in \langle A_1, \dots, A_k \rangle$.

For $i = 1, \dots, k$ and $j = 1, \dots, s$ we have $[A_i, B_j] \in G'$ whence $[A_i, B_j] \in \langle A_1, \dots, A_k \rangle$.

Similarly for $1 \leq i < j \leq s$ we have $[B_i, B_j] \in G'$ whence $[B_i, B_j] \in \langle A_1, \dots, A_k \rangle$.

This leads to a PCP for G .

EXERCISES FOR CHAPTER 4

Exercise 1: For each of the following statements determine whether it is true or false.

- (1) $\langle A, B \mid A^5, B^2, (AB)^3 \rangle$ is a PCP.
- (2) $\langle A, B \mid A^2, B^4, [A, B] = B^2 \rangle$ is a PCP.
- (3) If G has a PCP then it is finite and soluble.

Exercise 2: If $G = \langle A, B \mid A^{26} = B^3 = 1, [A, B] = A^2 \rangle$ find the order of BA .

Exercise 3:

Let $G = \langle A, B, C \mid [A, B] = C, [A, C], [B, C] \rangle$. Express $(BA)^3$ in the form $C^m B^n A^r$.

Exercise 4:

Let $G = \langle A, B, C \mid A^{10} = B^6 = C^8 = 1, [A, B] = C, [A, C] = [B, C] = 1 \rangle$.

- (a) Show by induction that $B^{-n}AB = AC^n$ for all n .
- (b) Find $|G|$; (c) Find $|Z(G)|$; (d) Find $|G'|$.

Exercise 5:

Let $G = \langle A, B, C \mid A^m = 1, B^n = A^k, C^d = B^e A^f \rangle$

$$[A, B] = A^r, [A, C] = A^s, [B, C] = B^u A^v \rangle.$$

Show that $A^M = 1$ where

$$M = \text{GCD}(m, (r+1)^{\text{GCD}(n, u)} - 1) \text{ and}$$
$$B^{MT} = 1 \text{ where } T = \text{GCD}(n, (u+1)^d - 1).$$

SOLUTIONS FOR CHAPTER 2

Exercise 1:

(1) FALSE: A relator of the form $(AB)^3$ is not permitted in a power-commutator presentation. In fact this is a presentation for A_5 which, being non-soluble, does not have a power-commutator presentation.

(2) FALSE: Technically it fails to be a power-commutator presentation because we have written the generators in the order A, B and so $[A, B]$ would have to be a word in just A . But, of course, if we wrote the presentation as

$\langle B, A \mid B^4, A^2, [B, A] = B^2 \rangle$ it would qualify. The group being presented is D_8 .

(3) TRUE

Exercise 2: Since $[A, B] = A^2$, $BA = A^3B$.

Hence $(BA)^2 = BABA = B^2A^4$ and

$(BA)^3 = BAB^2A^4 = B^3A^9A^4 = B^3A^{13} = A^{13}$.

Hence $(BA)^6 = A^{26} = 1$, so BA has order 6.

AB always has the same order as BA and so it too has order 6.

Exercise 3: Since $[A, B] = C$, $AB = BAC$. Since C commutes with both A and B , $AB = CBA$.

So $(BA)^2 = B(AB)A = B(CBA)A = CB^2A^2$.

$$\begin{aligned}
 \text{And } (BA)^3 &= (BA)CB^2A^2 = CB(AB)BA^2 \\
 &= CB(CBA)BA^2 = C^2B^2(AB)A^2 \\
 &= C^2B^2(CBA)A^2 \\
 &= C^3B^3A^3.
 \end{aligned}$$

Exercise 4: (a) Since $A^{-1}B^{-1}AB = C$, $B^{-1}AB = AC$, so it holds for $n = 1$.

Suppose $B^{-n}AB^n = AC^n$.

Then $B^{-1}(B^{-n}AB^n)B = B^{-1}AC^nB = ACC^n = AC^{n+1}$.

(b) Since $B^6 = 1$, $A = B^{-6}AB^6 = AC^6$ so $C^6 = 1$.

Since $C^8 = 1$ it follows that $C^2 = 1$.

(c) $|G| = 120$ since every element can be expressed uniquely as $A^mB^nC^r$ where:

$$m = 0, 1, 2, \dots, 9, n = 0, 1, 2, \dots, 5, r = 0, 1.$$

(d) Clearly $C \in Z(G)$. Also, $B^{-2}AB^2 = AC^2 = A$ so $B^2 \in Z(G)$. And $B^{-1}A^2B = (AC)^2 = A^2C^2$ so $A^2 \in Z(G)$. Hence $Z(G) = \{A^{2m}, B^{2n}, C\}$ which has order $5 \times 3 \times 2 = 30$.

(e) $G' = \langle C \rangle$ so $|G'| = 2$.

Exercise 5: Since $B^n = A^k$, it follows that B^n commutes with A .

Since $(BC)^{-1}A(BC) = A^{(r+1)(s+1)} = (CB)^{-1}A(CB)$ it follows that $[B, C] = (CB)^{-1}(BC)$ commutes with A .

Hence B^uA^v commutes with A , so B^v commutes with A . It follows that $B^{\text{GCD}(n, u)}$ commutes with A .

Conjugating A by $B^{\text{GCD}(n, u)}$ gives $A^{(r+1)\text{GCD}(n, u)}$.

So $A^{(r+1)\text{GCD}(n, u)} = A$ and so

if $P = (r + 1)^{\text{GCD}(n, u)} - 1$, $A^P = 1$.

But $A^m = 1$ and so $A^{\text{GCD}(m, P)} = 1$.

Let $H = \langle A \rangle$. Then G/H has the presentation:

$$\langle B, C \mid B^n = 1, C^d = B^e, [B, C] = B^u \rangle$$

and so by the first part applied to G/H :

$$B^T \in H \text{ where } T = \text{GCD}(n, (u + 1)^d - 1).$$

Hence $B^{MT} = 1$.